This paper describes a shape recognition technique using boundary chain codes extracted by a method as described by Pavlidis and used an 8-connected neighbourhood. A chain code is a representation of a two-dimensional contour using a one-dimensional array. Feed forward neural networks were trained to recognise these chain codes. In addition, backpropagation network is trained using different training algorithms and the resulting optimal parameters are recorded. Depending upon the complexity of the object to be recognised, this technique can used to form the basis for object recognition or as the best method. The research is also aimed to compare the performance of chain code representation as against centroidal profile extraction. The third objective is to determine the effectiveness of Feed forward artificial neural networks - ANNs in recognising and classifying different medical waste items in the image form. The networks were trained on a large number of medical waste items. The wide variety of shapes and textures revealed that just a representation of an object’s boundary is not sufficient to recognise every object in the set, and some form of texture recognition will also be required in recognising medical wastes. The results have shown that chain code has lesser performance as compared to centroidal profile representation.
Occupational health, Medical waste, Chain codes, Feedforward Networks, Waste Classification, Hazardous wastes.
International Journal of Trend in Scientific Research and Development - IJTSRD having
online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International
Journal which provides rapid publication of your research articles and aims to promote
the theory and practice along with knowledge sharing between researchers, developers,
engineers, students, and practitioners working in and around the world in many areas
like Sciences, Technology, Innovation, Engineering, Agriculture, Management and
many more and it is recommended by all Universities, review articles and short communications
in all subjects. IJTSRD running an International Journal who are proving quality
publication of peer reviewed and refereed international journals from diverse fields
that emphasizes new research, development and their applications. IJTSRD provides
an online access to exchange your research work, technical notes & surveying results
among professionals throughout the world in e-journals. IJTSRD is a fastest growing
and dynamic professional organization. The aim of this organization is to provide
access not only to world class research resources, but through its professionals
aim to bring in a significant transformation in the real of open access journals
and online publishing.